5% of total unfractionated ED14 fetal liver cells[17] We therefo

5% of total unfractionated ED14 fetal liver cells.[17] We therefore estimated that 8 × 107 unfractionated fetal liver cells contained ∼2 × 106 “bipotential” FLSPCs, comparable to 2 × 106 mature hepatocytes. To obtain sufficient numbers of cells for these studies, we isolated unfractionated hepatic stem/progenitor cells from ED15 fetal livers.

While maintaining the TAA dose after cell transplantation into advanced fibrotic rat liver (Figs. 4, 5), levels of 35.7 ± 6.4% and 40.8 ± 10.3% repopulation were achieved with FLSPCs at 2 and 4 months, respectively (n = 4/4). FLSPCs differentiated into hepatocytes (Fig. 4A) and bile duct cells. The large DPPIV+ clusters of hepatocytes CH5424802 concentration typically had DPPIV+ bile ducts along the edges of fibrous septae (Fig. 4). In some cases, DPPIV+ bile this website ducts extended into surrounding DPPIV-negative regions (Fig. 4B), presumably resulting from a stimulus for bile duct proliferation in the injured liver. The cells formed large DPPIV+ clusters with extensive tissue replacement (Fig. 4C,E). In comparison, substantial numbers of transplanted mature hepatocytes engrafted in the cirrhotic liver, proliferated long-term, and replaced diseased liver mass (Fig. 4A, right panels, 4D). However, liver repopulation levels with mature hepatocytes were

lower at 2 and 4 months after cell transplantation (8.3 ± 2.0% and 10.5 ± 3.2%, respectively; n = 3/4) compared to that obtained with FLSPCs (35.7 ± 6.4% and 40.8 ± 10.3%, respectively). Although there was higher repopulation with transplanted stem/progenitor cells, which indicates a higher engraftment or proliferation rate, our findings with mature hepatocytes also represent a significant new observation in the fibrotic liver. Simultaneous immunohistochemical analysis for DPPIV (CD26) and α-SMA (Fig. 5A) showed that DPPIV+ cell clusters derived from transplanted FLSPCs

completely replaced host hepatocytes selleck products within liver nodules surrounded by fibrous host tissue containing α-SMA+ cells (Fig. 5A, left panels), a phenomenon also observed after hepatocyte transplantation (Fig. 5A, upper right panel). Double-label immunohistochemistry for DPPIV (CD26) and Ki-67 (Fig. 5B) showed that FLSPC and hepatocyte-derived cell clusters contained actively proliferating cells for up to 4 months (Fig. 5B, middle and lower panels) and “competed” with proliferating host hepatocytes (Fig. 5B, upper right panel). Furthermore, DPPIV and G6Pase expressing hepatocytic cells were detected at 2 and 4 months after transplantation of FLSPCs or hepatocytes (Fig. 5C), demonstrating hepatocyte-specific metabolic activity of transplanted cells. Since we showed that FLSPCs can form cell clusters in the fibrotic liver without PH (Fig.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>