The SFO is functionally classified in two parts, the dorsolateral

The SFO is functionally classified in two parts, the dorsolateral peripheral (pSFO) and ventromedial core parts (cSFO). We investigated the possibility that neurons in each part of the SFO project region-specifically MCC950 cell line to each part of the PVN, using anterograde and retrograde tracing methods. Following injection of an anterograde tracer, biotinylated

dextran amine (BDX) in the SFO, the respective numbers of BDX-uptake neurons in the pSFO and cSFO were counted and the ratio of the former to the latter was obtained. In addition, the respective areas occupied by BDX-labeled axons per unit area of the mPVN and pPVN were measured and the ratio of the former to the latter was obtained. Similarly, following injection of the retrograde tracer

in the PVN, the respective areas occupied by tracer per unit area of the mPVN and pPVN were measured and the ratio of the Prexasertib in vivo former to the latter was obtained. The respective numbers of retrogradely labeled neurons in the pSFO and cSFO were also counted and the ratio of the former to the latter was obtained. It became clear by statistical analyses that there are strong positive correlations between the ratio of BDX-uptake neuron number in the SFO and the ratio of BDX-axon area in the PVN in anterograde experiment (correlation coefficient: 0.787) and between the ratio of retrograde neuron number in the SFO and the ratio of tracer area in the PVN in retrograde experiment (correlation coefficient:

0.929). The result suggests that the SFO projects region-specifically to the PVN, the pSFO to the mPVN and the cSFO to the pPVN. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Immunoreactive (ir) staining of the neuropeptides oxytocin (OT) and vasopressin (AVP) was performed in the brains of Brandt’s voles (Lasiopodomys brandtii) and greater long-tailed hamsters (Tscherskia triton)-two species that differ remarkably in social behaviors. Social Brandt’s voles had higher densities of OT-ir cells in the medial preoptic area (MPOA) and medial amygdala Epigenetics inhibitor (MeA) as well as higher densities of AVP-ir cells in the lateral hypothalamus (LH) compared to solitary greater long-tailed hamsters. In contrast, the hamsters had higher densities of OT-ir cells in the anterior hypothalamus (AH) and LH and higher densities of AVP-ir cells in the MPOA than the voles. OT-ir and AVP-ir fibers were also found in many forebrain areas with subtle species differences. Given the roles of OT and AVP in the regulation of social behaviors in other rodent species, our data support the hypothesis that species-specific patterns of central OT and AVP pathways may underlie species differences in social behaviors. However, despite a higher density of OT-ir cells in the paraventricular nucleus of the hypothalamus (PVN) in females than in males in both species, no other sex differences were found in OT-ir or AVP-ir staining.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>