An increase in cardiac sympathetic transmission relative to paras

An increase in cardiac sympathetic transmission relative to parasympathetic transmission is pathological as it can lead to disturbances in heart rhythm,

catecholaminergic toxicity and development of arrhythmias or fibrillation. Mice lacking the p75 neurotrophin receptor (p75(-/-)) have elevated atrial NE but a low heart rate suggesting autonomic selleck screening library dysregulation. Similarly, mice whose sympathetic neurons lack the gp130 cytokine receptor (gp130 KO) have a normal heart rate but enhanced bradycardia after vagal nerve stimulation. What is unclear is whether cardiac autonomic disturbances in these animals reflect systemic alterations in nerve activity or whether localized defects in neurotransmitter stores or release are involved. To examine local stimulus-evoked release of neurotransmitters, we have developed a novel method for simultaneous

Stem Cells inhibitor quantification of both NE and ACh after ex vivo atrial field stimulation. Using HPLC with electrochemical detection for NE, and HPLC with mass spectrometry for ACh, we found that following field stimulation NE release was impaired in p75(-/-) atria while ACh content and release was elevated in gp130 KO atria. Thus, alterations in localized transmitter release from atrial explants are consistent with in vivo deficits in heart rate control, suggesting peripheral alterations in autonomic transmission in these mice. (C) 2012 Elsevier Ireland Ltd. All rights reserved.”
“Influenza A virus infection is a persistent threat

to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing MEK162 chemical structure antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>