Current density used for galvanostatic charge/discharge cycling d

Current density used for galvanostatic charge/discharge cycling does not seem to have a major influence on the device capacitance. Devices capacitance increase with the length of the SiNWs on the electrode has been https://www.selleckchem.com/products/cobimetinib-gdc-0973-rg7420.html improved up to 10 μF cm−2 by using 20-μm Sepantronium SiNWs, i.e., ≈10-fold bulk silicon capacitance. This device exhibits 1.8% capacitance loss in 250 cycles with a maximum power density of 1.4 mW cm−2. As SiNWs growth by CVD with HCl gas enables to tune the NWs lengths without any limitation, the capacitance can be improved up to the wanted values by increasing the SiNWs length and density and by improving device design to avoid SiNWs constriction. Acknowledgments

The authors thank the “Délégation Générale pour l’Armement” DGA and CEA for the financial support of this work. References 1. Simon P, Gogotsi Y: Materials for electrochemical capacitors. Nat Mater 2008, 7:845–854.CrossRef 2. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W: Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 2005, 4:366–377.CrossRef 3. Miller JR, Simon P: Electrochemical capacitors for energy management. Science 2008, 321:651–652.CrossRef 4. Rogers JA, Huang Y: A curvy, stretchy future for electronics. Proc Nat Acad Sci USA 2009, 106:10875–10876.CrossRef

5. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 2009, 9:1872–1876.CrossRef 6. Chmiola J, Largeot C, Taberna P-L, Simon P,

Gogotsi Y: Monolithic carbide-derived Ilomastat mouse carbon films for micro-supercapacitors. Science 2010, 328:480–483.CrossRef 7. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P: Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 2010, 5:651–654.CrossRef 8. Kim HK, Seong TY, Lee SM, Yoon YS: Charge–discharge induced phase transformation of RuO 2 electrode for thin film supercapacitor. Met Mater Tolmetin Int 2003, 9:239–246.CrossRef 9. Moser F, Athouel L, Crosnier O, Favier F, Bélanger D, Brousse T: Transparent electrochemical capacitor based on electrodeposited MnO2 thin film electrodes and gel-type electrolyte. Electrochem Comm 2009, 11:1259–1261.CrossRef 10. Choi JW, McDonough J, Jeong S, Yoo JS, Chan CK, Cui Y: Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett 2010, 10:1409–1413.CrossRef 11. Rowlands SE, Latham RJ: Supercapacitor devices using porous silicon electrodes. Ionics 1999, 5:144–149.CrossRef 12. Desplobain S, Gautier G, Semai J, Ventura L, Roy M: Investigations on porous silicon as electrode material in electrochemical capacitors. Phys Stat Sol (C) 2007, 4:2180–2184.CrossRef 13. Lu F, Qiu M, Qi X, Yang L, Yin J, Hao G, Feng X, Li J, Zhang J: Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes. Appl Phys A 2011, 104:545–550.CrossRef 14.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>